Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 58: e20775, 2022. tab, graf
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-20232559

ABSTRACT

Abstract Up to today, there is no specific treatment against SARS-CoV-2 / COVID-19 infection; there the necessity to search for alternatives that help patients with COVID-19. The objective of this study was to review the use of ozone therapy as adjunct treatment for SARS-CoV-2 / COVID-19 infection, highlighting the mechanisms of action, forms of application and current clinical evidence. A systematic review was conducted in electronic databases, searching the terminology Ozone "or" Ozone therapy "and" SARS-CoV-2 or COVID-19 or Coronavirus. Results: nineteen studies were included; ten were editorials, comments, brief reports or reviews, and nine clinical studies. We found that ozone therapy could be favorable for treating patients infected with SARS-CoV-2 / COVID-19, through a direct antiviral effect, regulation of oxidative stress, immunomodulation and improvement of oxygen metabolism. Patients who were treated with ozone therapy responded favorably; therefore, ozone therapy appears to be a promising treatment for patients infected with SARS-CoV-2 / COVID-19. Its mechanism of action justifies its use as an adjuvant therapy; however, scientific evidence is based on case series and clinical trials are necessary to corroborate its effectiveness and safety.


Subject(s)
Coronavirus/pathogenicity , SARS-CoV-2/classification , COVID-19/pathology , Ozone Therapy , Antiviral Agents/analysis , Patients/classification , Oxidative Stress , Research Report , Infections/classification
2.
J Appl Microbiol ; 130(1): 2-13, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-2299665

ABSTRACT

AIMS: Providing a ready-to-use reverse transcriptase qPCR (RT-qPCR) method fully validated to detect the SARS-CoV-2 with a higher exclusivity than this shown by early published RT-qPCR designs. METHODS AND RESULTS: The specificity of the GPS™ CoVID-19 dtec-RT-qPCR test by analysis of sequence alignments was approached and compared with other RT-qPCR designs. The GPS™ CoVID-19 dtec-RT-qPCR test was validated following criteria of UNE/EN ISO 17025:2005 and ISO/IEC 15189:2012. Diagnostic validation was achieved by two independent reference laboratories, the Instituto de Salud Carlos III, (Madrid, Spain), the Public Health England (Colindale, London, UK), and received the label CE-IVD. The GPS design showed the highest exclusivity and passed all parameters of validation with strict acceptance criteria. Results from reference laboratories 100% correlated with these obtained by using reference methods and showed 100% of diagnostic sensitivity and specificity. CONCLUSIONS: The CE-IVD GPS™ CoVID-19 dtec-RT-qPCR test, available worldwide with full analytical and diagnostic validation, is the more exclusive for SARS-CoV-2 by far. SIGNIFICANCE AND IMPACT OF THE STUDY: Considering the CoVID-19 pandemic status, the exclusivity of RT-qPCR tests is crucial to avoid false positives due to related coronaviruses. This work provides of a highly specific and validated RT-qPCR method for detection of SARS-CoV-2, which represents a case of efficient transfer of technology successfully used since the pandemic was declared.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , COVID-19 Nucleic Acid Testing/standards , Computer Simulation , Humans , Pandemics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , SARS-CoV-2/classification , SARS-CoV-2/genetics , Sensitivity and Specificity , Sequence Alignment
4.
Science ; 379(6638): 1175-1176, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2255390
5.
J Virol ; 97(4): e0036523, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2249386

ABSTRACT

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Laboratories/standards , Research/standards , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Scientific Experimental Error , Viral Zoonoses/transmission , Viral Zoonoses/virology , Chiroptera/virology , Animals, Wild/virology
6.
Sci Rep ; 13(1): 4154, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2249038

ABSTRACT

The rapid spread of the COVID-19 pandemic has resulted in an unprecedented amount of sequence data of the SARS-CoV-2 genome-millions of sequences and counting. This amount of data, while being orders of magnitude beyond the capacity of traditional approaches to understanding the diversity, dynamics, and evolution of viruses, is nonetheless a rich resource for machine learning (ML) approaches as alternatives for extracting such important information from these data. It is of hence utmost importance to design a framework for testing and benchmarking the robustness of these ML models. This paper makes the first effort (to our knowledge) to benchmark the robustness of ML models by simulating biological sequences with errors. In this paper, we introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio. We show from experiments on a wide array of ML models that some simulation-based approaches with different perturbation budgets are more robust (and accurate) than others for specific embedding methods to certain noise simulations on the input sequences. Our benchmarking framework may assist researchers in properly assessing different ML models and help them understand the behavior of the SARS-CoV-2 virus or avoid possible future pandemics.


Subject(s)
Computer Simulation , Genome, Viral , Machine Learning , Research Design , SARS-CoV-2 , Machine Learning/standards , SARS-CoV-2/classification , SARS-CoV-2/genetics , Genome, Viral/genetics , Viral Proteins/genetics , COVID-19/virology , Sequence Analysis, RNA
7.
Nat Commun ; 13(1): 1012, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-2275346

ABSTRACT

Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16-20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement.


Subject(s)
COVID-19/prevention & control , Communicable Diseases, Imported/prevention & control , Quarantine/legislation & jurisprudence , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/transmission , Contact Tracing , England/epidemiology , Genome, Viral/genetics , Genomics , Health Impact Assessment , Humans , SARS-CoV-2/classification , Travel/legislation & jurisprudence , Travel-Related Illness
8.
J Virol ; 97(2): e0171922, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2213880

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.


Subject(s)
COVID-19 , Host Specificity , Pangolins , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Cell Line , China , COVID-19/transmission , COVID-19/virology , Lung/pathology , Lung/virology , Mice, Transgenic , Pangolins/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Swine , Chiroptera
11.
PLoS One ; 17(12): e0279428, 2022.
Article in English | MEDLINE | ID: covidwho-2197098

ABSTRACT

The SARS-CoV-2 virus, the agent of COVID-19, caused unprecedented loss of lives and economic decline worldwide. Although the introduction of public health measures, vaccines, diagnostics, and therapeutics disrupted the spread of the SARS-CoV-2, the emergence of variants poses substantial threat. This study traced SARS-CoV-2 variants circulating in Uganda by July 2021 to inform the necessity for refinement of the intervention medical products. A comprehensive in silico analysis of the SARS-CoV-2 genomes detected in clinical samples collected from COVID-19 patients in Uganda revealed occurrence of structural protein variants with potential of escaping detection, resisting antibody therapy, or increased infectivity. The genome sequence dataset was retrieved from the GISAID database and the open reading frame encoding the spike, envelope, membrane, or nucleocapsid proteins was translated. The obtained protein sequences were aligned and inspected for existence of variants. The variant positions on each of the four alignment sets were mapped on predicted epitopes as well as the 3D structures. Additionally, sequences within each of the sets were clustered by family. A phylogenetic tree was constructed to assess relationship between the encountered spike protein sequences and Wuhan-Hu-1 wild-type, or the Alpha, Beta, Delta and Gamma variants of concern. Strikingly, the frequency of each of the spike protein point mutations F157L/Del, D614G and P681H/R was over 50%. The furin and the transmembrane serine protease 2 cleavage sites were unaffected by mutation. Whereas the Delta dominated the spike sequences (16.5%, 91/550), Gamma was not detected. The envelope protein was the most conserved with 96.3% (525/545) sequences being wild-type followed by membrane at 68.4% (397/580). Although the nucleocapsid protein sequences varied, the variant residue positions were less concentrated at the RNA binding domains. The dominant nucleocapsid sequence variant was S202N (34.5%, 205/595). These findings offer baseline information required for refining the existing COVID-19 vaccines, diagnostics, and therapeutics.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Phylogeny , Retrospective Studies , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Uganda/epidemiology , Computer Simulation , Point Mutation
12.
Microbiol Spectr ; 10(1): e0245521, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-2193554

ABSTRACT

Containment measures employed during the COVID-19 pandemic included prompt recognition of cases, isolation, and contact tracing. Bilateral nasal (NA) swabs applied to a commercial antigen-based rapid diagnostic test (Ag-RDT) offer a simpler and more comfortable alternative to nasopharyngeal (NP) collection; however, little is known about the sensitivity of this method in an asymptomatic population. Participants in community-based asymptomatic testing sites were screened for SARS-CoV-2 using an Ag-RDT with NP sampling. Positive individuals returned for confirmatory molecular testing and consented to repeating the Ag-RDT using a bilateral NA swab for comparison. Residual test buffer (RTB) from Ag-RDTs was subjected to real-time reverse transcription-PCR (RT-PCR). Of 123,617 asymptomatic individuals, 197 NP Ag-RDT-positive participants were included, with 175 confirmed positive by RT-PCR. Of these cases, 154 were identified from the NA swab collection with Ag-RDT, with a sensitivity of 88.0% compared to the NP swab collection. Stratifying results by RT-PCR cycle threshold demonstrated that sensitivity of the nasal collection method varied based on the cycle threshold (CT) value of the paired RT-PCR sample. RT-PCR testing on the RTB from the Ag-RDT using NP and NA swab collections resulted in 100.0% and 98.7% sensitivity, respectively. NA swabs provide an adequate alternative to NP swab collection for use with Ag-RDT, with the recognition that the test is most sensitive in specimens with high viral loads. With the high sensitivity of RT-PCR testing on RTB from Ag-RDT, a more streamlined approach to confirmatory testing is possible without recollection or use of paired collections strategies. IMPORTANCE Nasal swabbing for SARS-CoV-2 (COVID-19) comes with many benefits but is slightly less sensitive than traditional nasopharyngeal swabbing; however, confirmatory lab-based testing could be performed directly from the residual buffer from either sample type.


Subject(s)
Antigens, Viral/analysis , COVID-19/virology , Carrier State/virology , Nasopharynx/virology , Nose/virology , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Antigens, Viral/genetics , Antigens, Viral/immunology , Asymptomatic Diseases , COVID-19/diagnosis , COVID-19 Serological Testing , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity
13.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2158568

ABSTRACT

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Subject(s)
Antibodies, Viral , COVID-19 , Immune Evasion , SARS-CoV-2 , Humans , Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines , SARS-CoV-2/classification , SARS-CoV-2/genetics
16.
Proc Natl Acad Sci U S A ; 119(37): e2204717119, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2017032

ABSTRACT

The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.


Subject(s)
COVID-19 , Mutation , SARS-CoV-2 , Viral Regulatory and Accessory Proteins , Virulence , COVID-19/virology , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Viral Regulatory and Accessory Proteins/genetics , Virulence/genetics , Virus Replication/genetics
17.
J Virol ; 96(17): e0058222, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992936

ABSTRACT

Emerging variants, especially the recent Omicron variant, and gaps in vaccine coverage threaten mRNA vaccine mediated protection against SARS-CoV-2. While children have been relatively spared by the ongoing pandemic, increasing case numbers and hospitalizations are now evident among children. Thus, it is essential to better understand the magnitude and breadth of vaccine-induced immunity in children against circulating viral variant of concerns (VOCs). Here, we compared the magnitude and breadth of humoral immune responses in adolescents and adults 1 month after the two-dose Pfizer (BNT162b2) vaccination. We found that adolescents (aged 11 to 16) demonstrated more robust binding antibody and neutralization responses against the wild-type SARS-CoV-2 virus spike protein contained in the vaccine compared to adults (aged 27 to 55). The quality of the antibody responses against VOCs in adolescents were very similar to adults, with modest changes in binding and neutralization of Beta, Gamma, and Delta variants. In comparison, a significant reduction of binding titers and a striking lack of neutralization was observed against the newly emerging Omicron variant for both adolescents and adults. Overall, our data show that a two-dose BNT162b2 vaccine series may be insufficient to protect against the Omicron variant. IMPORTANCE While plasma binding and neutralizing antibody responses have been reported for cohorts of infected and vaccinated adults, much less is known about the vaccine-induced antibody responses to variants including Omicron in children. This illustrates the need to characterize vaccine efficacy in key vulnerable populations. A third (booster) dose of BNTb162b was approved for children 12 to 15 years of age by the Food and Drug Administration (FDA) on January 1, 2022, and pediatric clinical trials are under way to evaluate the safety, immunogenicity, and effectiveness of a third dose in younger children. Similarly, variant-specific booster doses and pan-coronavirus vaccines are areas of active research. Our data show adolescents mounted stronger humoral immune responses after vaccination than adults. It also highlights the need for future studies of antibody durability in adolescents and children as well as the need for future studies of booster vaccination and their efficacy against the Omicron variant.


Subject(s)
Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Child , Humans , Immunization, Secondary , SARS-CoV-2/classification , SARS-CoV-2/immunology
18.
mBio ; 13(4): e0194422, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1986333

ABSTRACT

The human upper respiratory tract, specifically the nasopharyngeal epithelium, is the entry portal and primary infection site of respiratory viruses. Productive infection of SARS-CoV-2 in the nasal epithelium constitutes the cellular basis of viral pathogenesis and transmissibility. Yet a robust and well-characterized in vitro model of the nasal epithelium remained elusive. Here we report an organoid culture system of the nasal epithelium. We derived nasal organoids from easily accessible nasal epithelial cells with a perfect establishment rate. The derived nasal organoids were consecutively passaged for over 6 months. We then established differentiation protocols to generate 3-dimensional differentiated nasal organoids and organoid monolayers of 2-dimensional format that faithfully simulate the nasal epithelium. Moreover, when differentiated under a slightly acidic pH, the nasal organoid monolayers represented the optimal correlate of the native nasal epithelium for modeling the high infectivity of SARS-CoV-2, superior to all existing organoid models. Notably, the differentiated nasal organoid monolayers accurately recapitulated higher infectivity and replicative fitness of the Omicron variant than the prior variants. SARS-CoV-2, especially the more transmissible Delta and Omicron variants, destroyed ciliated cells and disassembled tight junctions, thereby facilitating virus spread and transmission. In conclusion, we establish a robust organoid culture system of the human nasal epithelium for modeling upper respiratory infections and provide a physiologically-relevant model for assessing the infectivity of SARS-CoV-2 emerging variants. IMPORTANCE An in vitro model of the nasal epithelium is imperative for understanding cell biology and virus-host interaction in the human upper respiratory tract. Here we report an organoid culture system of the nasal epithelium. Nasal organoids were derived from readily accessible nasal epithelial cells with perfect efficiency and stably expanded for more than 6 months. The long-term expandable nasal organoids were induced maturation into differentiated nasal organoids that morphologically and functionally simulate the nasal epithelium. The differentiated nasal organoids adequately recapitulated the higher infectivity and replicative fitness of SARS-CoV-2 emerging variants than the ancestral strain and revealed viral pathogenesis such as ciliary damage and tight junction disruption. Overall, we established a human nasal organoid culture system that enables a highly efficient reconstruction and stable expansion of the human nasal epithelium in culture plates, thus providing a facile and robust tool in the toolbox of microbiologists.


Subject(s)
COVID-19 , Nasal Mucosa , Organoids , SARS-CoV-2 , COVID-19/virology , Humans , Nasal Mucosa/virology , Organoids/virology , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Tissue Culture Techniques
19.
Emerg Infect Dis ; 28(9): 1920-1923, 2022 09.
Article in English | MEDLINE | ID: covidwho-1974606

ABSTRACT

We detected a highly divergent SARS-CoV-2 Alpha variant in an immunocompromised person several months after the latest detection of the Alpha variant in the Netherlands. The patient was infected for 42 weeks despite several treatment regimens and disappearance of most clinical symptoms. We identified several potential immune escape mutations in the spike protein.


Subject(s)
COVID-19 , Mutation , SARS-CoV-2 , COVID-19/immunology , Humans , Immunocompromised Host , Netherlands , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
20.
BMJ ; 378: e070695, 2022 08 02.
Article in English | MEDLINE | ID: covidwho-1968217

ABSTRACT

OBJECTIVE: To assess the risk of covid-19 death after infection with omicron BA.1 compared with delta (B.1.617.2). DESIGN: Retrospective cohort study. SETTING: England, United Kingdom, from 1 December 2021 to 30 December 2021. PARTICIPANTS: 1 035 149 people aged 18-100 years who tested positive for SARS-CoV-2 under the national surveillance programme and had an infection identified as omicron BA.1 or delta compatible. MAIN OUTCOME MEASURES: The main outcome measure was covid-19 death as identified from death certification records. The exposure of interest was the SARS-CoV-2 variant identified from NHS Test and Trace PCR positive tests taken in the community (pillar 2) and analysed by Lighthouse laboratories. Cause specific Cox proportional hazard regression models (censoring non-covid-19 deaths) were adjusted for sex, age, vaccination status, previous infection, calendar time, ethnicity, index of multiple deprivation rank, household deprivation, university degree, keyworker status, country of birth, main language, region, disability, and comorbidities. Interactions between variant and sex, age, vaccination status, and comorbidities were also investigated. RESULTS: The risk of covid-19 death was 66% lower (95% confidence interval 54% to 75%) for omicron BA.1 compared with delta after adjusting for a wide range of potential confounders. The reduction in the risk of covid-19 death for omicron compared with delta was more pronounced in people aged 18-59 years (number of deaths: delta=46, omicron=11; hazard ratio 0.14, 95% confidence interval 0.07 to 0.27) than in those aged ≥70 years (number of deaths: delta=113, omicron=135; hazard ratio 0.44, 95% confidence interval 0.32 to 0.61, P<0.0001). No evidence of a difference in risk was found between variant and number of comorbidities. CONCLUSIONS: The results support earlier studies showing a reduction in severity of infection with omicron BA.1 compared with delta in terms of hospital admission. This study extends the research to also show a reduction in the risk of covid-19 death for the omicron variant compared with the delta variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/mortality , COVID-19/virology , Humans , Proportional Hazards Models , Retrospective Studies , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL